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Abstract— Self-calibrating an array of 3-D field sensors, such
as three-axis magnetometers and accelerometers, requires esti-
mation of two variable sets—each sensor’s intrinsic model that
maps its input field to the corresponding measurement and each
sensor’s coordinates relative to a common frame of reference
within the array. In this work, we propose the first unified
self-calibration method for arrays of same-type 3-D field sensors,
which is robust to anomalous sensor measurements unlike previ-
ous algorithms. The method breaks down the array calibration
task into three steps of more easily subproblems, first estimating
the intrinsic variables of each sensor independently, second
computing the sensor coordinates with respect to a common
reference frame, and last refining both these intrinsics and
orientations jointly to minimize physically meaningful sensor
estimation errors. Each stage has been carefully designed to
maintain robustness to anomalies without compromising esti-
mation quality. The performance of our method is compared
against other state-of-the-art algorithms on both simulation
and real data from a magnetometer array and accelerometer
array, demonstrating significant improvements in accuracy and
precision of the estimated array variables in versatile real-world
self-calibration environments.

Index Terms— Accelerometer array, calibration, magnetometer
array, nonlinear optimization, robust optimization.

I. INTRODUCTION

THE 3-D field sensors, such as triaxial magnetometers and
accelerometers, are widely used devices in engineering

and science. Accelerometers and magnetometers are frequently
used for attitude control in navigation and mapping [1]–[4],
wearable devices [5]–[7], and inertial navigation systems for
aircrafts and unmanned aerial vehicles [8]. Also, both sensors
form an integral part of the inertial measurement unit (IMU),
which is an essential component for localization tasks.

In recent years, combining a set of same-type 3-D field
sensors (e.g., all magnetometers or all accelerometers) to
form a sensor array has introduced a variety of additional
useful applications as illustrated by Nilsson and Skog [13] and
Skog [14]. To describe a few examples, Renaudin et al. [15]
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used an array of magnetometers to estimate orientation (with
respect to the magnetic north) by averaging out heading
estimates from individual sensors in a special geometric
arrangement. Pang et al. [9] and Wang et al. [10] employed
an array of fluxgate magnetometers for localization of ferro-
magnetic objects by applying scalar triangulation and ranging
algorithm [16], [17]. Schopp et al. [12] illustrated that an
accelerometer array can directly measure angular accelera-
tions without needing to differentiate the angular velocities
obtained from a gyroscope. This has the benefit of avoiding
the gyroscope’s saturation issue at high angular velocity [14]
and reducing noise amplification arising from differentiation,
thereby improving the device’s noise-to-signal ratio [12].
In addition, Brás et al. [18] presented a way to configure fault
detection and isolation systems using multiple inertial sen-
sors. Motivated by a wide range of potential applications,
Skog et al. [19] have made a small chip comprising nine iner-
tial measurement units (MIMU). One can also utilize MIMU
to improve reliability by averaging measurements across all
sensors to reduce independent stochastic errors.

In all the above cases, use of a 3-D field sensor array
must be accompanied by accurate calibration of individual
sensors, especially to account for different rotations between
sensors and misalignment of the sensing axes which exists
even for off-the-shelf sensors [20]. With the exception of a few
earlier works calibrating sensor arrays on a rotation table, most
studies [9]–[12], [15], [20] adopt a self-calibration approach
that can be easily executed by end users. These methods
are founded on the basis that: 1) the underlying ambient
field (magnetic or gravitational) has constant magnitude and
direction and 2) the sensors are rigidly attached to an array
body. Ultimately, self-calibration aims to retrieve the sensor
array model, which best preserves these geometric constraints.

Over the past decade, several studies pioneered in devel-
oping self-calibration algorithms for accelerometer arrays
and magnetometer arrays. The methods for magnetometer
arrays [9], [10], [21] are mostly based on an incremental
approach, whereby a subset of the sensor array variables is first
computed and used for estimation of the remaining variables.
Such type of methods breaks down the calibration task into
more easily solved subproblems but becomes prone to accu-
mulation of errors due to the nature of sequential estimation.
On the other hand, the existing methods for accelerometer
arrays optimize all variables jointly, but one relies on an
iterative algorithm that requires a suitable initialization (i.e.,
prior knowledge) of the array model [12], and the other
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Fig. 1. Overall pipeline of our sensor array calibration method. We first
estimate each sensor’s intrinsic variables (described by an ellipsoid), which
transforms each measurement to the respective field direction. This yields the
orthogonal axes (yellow) from the original axes (black). Then, we estimate
each sensor’s absolute rotation with respect to a common frame of reference
(set as the sensor 1’s coordinates for the above case). Finally, both the
intrinsics and rotations of all sensors are jointly optimized for improved
accuracy. The method is not limited to any particular setup of the sensors
and is robust to anomalies without compromising calibration accuracy.

is based on a matrix factorization approach that yields an
algebraic solution [11], requiring further optimization for
improved accuracy (reviewed in Section I-A). Cherrypicking
the advantages of both incremental and global approaches is
a nontrivial but desirable task, providing the first motivation
of this work.

Another major limitation of these methods is their weak
robustness to anomalous measurements. For magnetometer
arrays, outliers can arise due to local magnetic disturbances
from nearby ferromagnetic materials that do not move with
the array, inflicting inconsistent soft and hard iron effects.
For accelerometer arrays, those can occur from sudden move-
ments triggering nonnegligible instantaneous accelerations.
In both cases, the quality of the calibrated model can be
significantly downgraded. Consequently, previous works have
required a carefully designated maneuver of the sensor array
in a well-controlled environment (e.g., without ferromagnetic
obstacles) to avoid anomalies, but this comes at the cost of
increased time and effort required for self-calibration. Devising
a robust autocalibration method to greatly simplify the data
acquisition process serves as our second motivation.

In this work, we propose a unified autocalibration method
for three-axis magnetometer arrays and three-axis accelerom-
eter arrays that are robust to outlier measurements unlike
previous approaches. As shown in Fig. 1, our method is a
three-stage process comprising: 1) estimation of each sensor’s
intrinsic variables (that are invariant to rotation) and 3-D field
directions (in its own sensor frame); 2) computation of all sen-
sors’ absolute rotations; and 3) joint refinement of the whole
sensor variables and 3-D field directions in the common frame
of reference. Each stage has been equipped with an appropriate

robust optimization technique to improve endurance against
outliers. Our method can be viewed as an integration of incre-
mental and global approaches, preventing the accumulation of
errors while eliminating a need for hand-tuned initialization
of the array variables for optimization.

To the best of our knowledge, this is the first work to address
the issue of anomalous measurements in self-calibrating 3-D
field sensor arrays. Through carefully designed steps incor-
porating robust optimization, we will show that accurate
calibration can be achieved from arbitrary motions in the
presence of outliers.

Our main contributions are summarized as follows:
1) a new canonical form of the triaxial sensor array model

to yield a unique and meaningful solution;
2) a new self-calibration method for arrays of same-type

3-D field sensors that is robust to outlier observations
and does not require a particular arrangement of the
sensors;

3) experimental comparisons against other state-of-the-art
methods on synthetic and real data;

4) an ablation study of our algorithm to empirically observe
the performance gains brought by different components.

The rest of this article is structured as follows. A review
of autocalibration algorithms for magnetometer arrays and
accelerometer arrays is provided in Section I-A. We then
formulate the triaxial sensor array as a mathematical model
and propose its canonical form in Section II, yielding a
unique meaningful form of the array model for optimization.
Section III illustrates each stage of the proposed autocalibra-
tion method. In Section IV, our method is compared against
other state-of-the-art algorithms on both synthetic and real data
under various settings. Conclusions are drawn in Section V.

A. Related Work

This section comprises a review of autocalibration methods
for three-axis magnetometer arrays and accelerometer arrays.
We will use the term intrinsics to define a group of sensor
variables that are invariant to rotation (K and b in Section II).

Recently, Papafotis and Sotiriadis [22] showed that
accelerometer and magnetometer calibration share a great
deal of similarity that both sensors are assumed to out-
put a linear transformation of the involved field (magnetic
field or gravity), while the field magnitude remains constant.
Despite such connection, calibration of magnetometer arrays
and accelerometer arrays have been addressed separately by
prior works [9]–[12], [21].

As mentioned in Section I, the self-calibration methods
for magnetometer arrays are mostly incremental methods,
sequentially estimating a subset of the sensor array variables
in each stage. Pang et al. [9] devised a two-step approach,
whereby all sensor’s intrinsics and their perceived 3-D field
directions are first estimated, after which sensor misalignments
are computed by aligning each sensor’s perceived fields to
the common frame of reference. Since the algorithm utilizes
an iterative nonlinear least-squares algorithm for both stages,
it requires good initialization of the array model and known
array geometry without which would lead to an inaccurate
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TABLE I

OVERVIEW OF SELF-CALIBRATION ALGORITHMS FOR MAGNETOMETER ARRAYS AND ACCELEROMETER ARRAYS (SEE SECTION I-A FOR DETAILS)

solution. To circumvent the requirement for known array
geometry, Pang et al. [21] and Wang et al. [10] proposed a lin-
ear solver to directly yield the product of sensor intrinsics and
rotation for each sensor given a calibrated reference sensor.
Nevertheless, this method still cannot avoid the accumulation
of errors if the reference sensor is not calibrated to high
accuracy.

On the other hand, previous self-calibration algorithms for
accelerometer arrays are all global joint optimization-based
methods, simultaneously estimating sensor intrinsics, absolute
rotations, and 3-D field directions. Hwangbo et al. [11] pro-
posed a two-step factorization approach, whereby a measure-
ment matrix comprising all sensors’ measurements at different
time steps is first decomposed as two rank-4 matrices, after
which are upgraded closely to a physically viable solution. The
method has the advantages of being initialization-free and not
limited to three-axis sensors, but it employs an overrelaxed
sensor model whereby each sensor’s bias is differently scaled
per measurement across different time steps, yielding an
unrealistic solution. Schopp et al. [12] developed a method that
can obtain each sensor’s translation in addition to rotation by
simultaneously minimizing the sum of sensor estimation errors
(i.e., the difference between the model estimate and the obser-
vation) and regularization terms promoting smoothness of the
calibration movement. However, its formulation is specific for
accelerometer arrays only, and the algorithm requires known
sensor intrinsics and appropriate initialization of each sensor’s
pose for successful convergence.

In addition, none of the aforementioned works have explic-
itly addressed the issue of anomalies during self-calibration,
consequently requiring carefully obtained outlier-free mea-
surements for calibration. Recently, improving robustness to
outliers has been studied for the case of single three-axis
magnetometer and accelerometer [23], but the work is not
directly applicable to an array of multiple sensors.

II. CANONICAL FORM OF THE SENSOR ARRAY MODEL

We now move onto formulating the 3-D field sensor array
as a mathematical model and proposing its canonical form to
remove solution ambiguity. We will assume that an array com-
prises M rigidly attached sensors (either all magnetometers or

accelerometers) and that N synchronized measurements are
observed across all sensors during an arbitrary movement of
the array. We will also assume (as in [22]) that each three-axis
sensor i can be modeled by the equation

m( j)
i = y( j)

i + ε
( j)
i = Ai x̂

( j)
i + bi + ε

( j)
i (1)

where m( j)
i ∈ R

3 is the sensor i ’s measurement at time step j ,
y( j)

i ∈ R
3 is the ideal output of sensor i at time j , x̂( j)

i ∈ S2

is the corresponding field direction (either magnetic field or
gravity) at time step j in the sensor i ’s coordinates, Ai ∈ R

3×3

and bi ∈ R
3 are the sensor i ’s intrinsic variables (e.g., due

to soft and hard iron effects for a magnetometer and axes
misalignment) that are invariant to the sensor’s orientation,
and ε

( j)
i ∈ R

3 is some observation noise.
Since all the sensors are rigidly attached to the array body,

there exists a rotation matrix for each sensor i , Ri , that
transforms the field direction in the reference frame to the
field in the sensor i ’s coordinates. In terms of equation

x̂( j)
i = Ri x̂( j) ∀ i = 1, . . . , M, j = 1, . . . , N (2)

where x̂( j) ∈ S2 is the normalized field direction at time j
in the reference frame and Ri ∈ SO(3) is the rotation matrix
that transforms the field direction in the reference frame to that
in the i th sensor’s frame. M denotes the number of sensors
and N signifies the number of measurements for each sensor.
Equation (2) can be viewed as a rigidity constraint of field
directions.

Combining (1) and (2) yields the three-axis sensor array
model

y( j)
i = Ai x̂

( j)
i + bi = AiRi x̂( j) + bi ∀ i = 1, . . . , M. (3)

Equation (3) has solution ambiguity (known as gauge free-
dom [24]), i.e., given model variables (Ai , Ri , bi ), any solution
of the form (AiQi , Q�i RiU, bi ) with arbitrary orthogonal
matrices {Qi ∈ O(3)} and U ∈ O(3) produces an equivalent
model since

(AiQi )
(
Q�i RiU

)(
U�x̂( j)

) = AiRi x̂
( j)
i ∀ i = 1, . . . , M. (4)

To resolve this ambiguity, we propose a canonical form of
the array model. Inspired by prior work [23], [25], for each
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sensor i , we constrain Ai to be an upper triangular matrix, Ki ∈
R

3×3, with positive diagonal entries. This effectively fixes Qi

as any orthogonal matrix other than Qi = I will violate this
constraint. Next, we set the first sensor’s axes as the common
frame of reference by setting R1 = I, effectively fixing U. The
resulting array model equation is

y( j)
i = Ki x̂

( j)
i + bi = KiRi x̂( j) + bi ∀ i = 1, . . . , M. (5)

The above essentially projects the set of all possible solutions
to a unique physically meaningful solution. Note that this form
is flexible as the outputted solution can always be transformed
via simple matrix multiplication to allow a different form of
Ai (e.g., lower triangular or symmetric positive-definite) or set
other sensor as the common frame of reference.

III. PROPOSED METHOD

In our method, we first estimate each sensor’s intrinsic
parameters, Ki (ambiguity-resolved Ai ) and bi , along with
the sensed field direction x̂( j)

i for each time step j . Second,
previously obtained field directions across all sensors {x̂( j)

i }
are used to obtain a set of relative rotations {Ri,i ′ } between
all pairs of sensors. These are then used to estimate absolute
sensor rotations {Ri }. Finally, all model variables and the field
directions (in the reference frame) are jointly estimated by
robustly minimizing the sum of array model estimation errors.

A. Estimation of Sensor Intrinsics and 3-D Field Directions

In the first stage, we find each constituent sensor’s intrinsics
(Ki , bi ) and the 3-D field directions {x̂( j)

i } in its own sensor
frame, which best explains the corresponding measurements.
For this task, we apply the two-step robust autocalibration
method developed in [23] independently for each sensor.

To briefly describe the aforementioned algorithm, it first
fits an ellipsoid by minimizing an outlier-robust L1-norm cost
function. The objective is derived from the fact that each field
direction x̂( j)

i is of unit norm, which can be written as∥∥∥x̂( j)
i

∥∥∥2

2
− 1 =

∥∥∥K−1
i

(
y( j)

i − bi

)∥∥∥2

2
− 1 = 0. (6)

The above can be cast as the following optimization problem:

arg min
Ki ,bi ,

{
x̂( j )

i

}
N∑

j=1

∥∥∥∥
∥∥∥K−1

i

(
m( j)

i − bi

)∥∥∥2

2
− 1

∥∥∥∥
1

(7)

where the term inside the L1-norm is an algebraic error
directly derived from (6) with the ideal model output y( j)

i

replaced by the observation m( j)
i . (Note that changing the

L1-norm in (7) to L2 switches to least-squares ellipsoid
fitting.) As stated in [23], (7) is first formulated as a convex
semidefinite program proposed by Calafiore [26], which can
then be efficiently solved using the SeDuMi solver [27].

The obtained solution is then refined by robustly minimizing
the sum of (geometric) sensor array estimation errors each
defined as the distance between the model estimate and the
corresponding measurement. In terms of equation, we solve

arg min
Ki ,bi ,

{
x̂( j )

i ∈S2
}

N∑
j=1

ρ

(∥∥∥Ki x̂
( j)
i + bi −m( j)

i

∥∥∥2

2

)
(8)

Algorithm 1 Robust Estimation of Individual Sensor Intrinsics
{(Ki , bi )} and 3-D Field Directions {x̂( j)

i }
Inputs: measurements {m( j)

i }
1: for i = 1, .., M do
2: Yield intrinsics (Ki , bi ) and fields {x̂( j)

i } by solving (7).
3: Refine (Ki , bi ) and {x̂( j)

i } by iteratively solving (8).
4: end for

Outputs: sensor intrinsics {(Ki , bi )} and fields {x̂( j)
i }

Fig. 2. Ellipsoid fitting results on 100 synthetic noisy data points with a single
outlier (1%). Blue dots are inliers and red cross is the outlier. Data points are
sampled from a unit sphere with additive Gaussian noise N (0, 0.01I), and
the outlier is generated by further adding uniform distribution noise U(0, 1)
to each dimension. Robust intrinsic estimation yields a solution close to
ground truth (unit sphere), while least-squares fitting yields a skewed ellipsoid.
(a) Least-squares fitting. (b) Robust intrinsic estimation.

where ρ : R → R is a robust kernel implemented to lessen
the effect of gross outliers. While several choices are available
for ρ(·), we opt for the Cauchy loss ρ(s) = log(1 + s/τ 2)
like in [23], where τ is the kernel width implying the inlier
radius.

Since (8) involves robust nonlinear least-squares optimiza-
tion, it can be solved using an iterative algorithm such as
Levenberg–Marquardt [28], [29] equipped with Trigg’s cor-
rection [24] as in [23], initialized by the solution of (7).

The above intrinsic estimation method is described in
Algorithm 1. As shown in Fig. 2, the robust nature of the
method helps to obtain more accurate intrinsic model for each
sensor. Also, the fact that each sensor’s intrinsics are solved
independently allows us to avoid accumulation of errors.

B. Estimation of Absolute Sensor Rotations
After each sensor’s intrinsics (Ki , bi ) and field directions
{x̂( j)

i } (in its own frame) are computed, the next task is to
estimate the rotation of each sensor (Ri ) with respect to the
common reference frame. We accomplish this by computing
the relative rotation between each pair of sensors, from which
we estimate most plausible absolute sensor rotations.

1) Estimation of Relative Rotations Between Sensor Pairs:
Relative rotation between a pair of sensors i and i ′ can be
estimated by finding a rotation matrix Ri,i ′ that transforms the
field directions in the sensor i ’s frame ({x̂( j)

i }) to the fields
in the sensor i ′’s frame ({x̂( j)

i ′ }), since ideally x̂( j)
i ′ = Ri,i ′ x̂

( j)
i

(following the convention from [30]). This can be formulated
as Wahba’s problem [31], in which one finds the most feasible
rotation between two sets of 3-D points.

One thing to note here is that miscomputed fields dur-
ing the intrinsic estimation phase can yield outlier pairs
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of field directions. To avoid these outlier correspondences,
we incorporate Fischler and Bolles’ random sample consen-
sus (RANSAC) algorithm [32], which is a popular choice
for robust model estimation. The basic idea is simple—
rather than utilizing all field pairs at once, the algorithm
iteratively samples a few field pairs at random to estimate
multiple potential relative rotations, after which it outputs
the best relative rotation matrix across all iterations. Through
consecutive random sampling, the algorithm is encouraged to
once draw a set of all inlier samples to fit a correct relative
rotation matrix.

Implementing RANSAC requires two components, a fast
model-fitting algorithm known as minimal solver and the
objective function used to quantify the model quality. For the
minimal solver, we choose the singular value decomposition
(SVD)-based method illustrated in the work of Markley and
Mortari [4], which solves the following Wahba’s problem:

arg min
Ri,i′ ∈SO(3)

∑
j∈�

∥∥∥x̂( j)
i ′ − Ri,i ′ x̂

( j)
i

∥∥∥2

2
(9)

where � denotes a set of sampled field-pair indices. The
solution of (9) is derived via SVD as follows:∑

j∈�
x̂( j)

i ′ x̂( j)�
i = USV�

Ri,i ′ = U diag
([

1, 1, det
(
UV�

)])
V�. (10)

It is known in the literature [33] that the above computation
only requires two unique field vector pairs (i.e., |�| = 2). In
addition to (10) being a closed-form solution, this is a big
advantage for a RANSAC-based algorithm since (10) is more
likely to draw all-inlier samples (which is required to fit a
correct model) than other solvers requiring more than two data
points.

For the objective function fi,i ′ , we combine the estimation
errors of sensors i and i ′ to check how well the relative rotation
Ri,i ′ suits the measurements of both sensors, i.e., we compute

f
(
Ri,i ′

) := 1

2

N∑
j=1

[
ρ

(∥∥∥KiR
�
i,i ′ x̂

( j)
i ′ + bi −m( j)

i

∥∥∥2

2

)

+ ρ

(∥∥∥Ki ′Ri,i ′ x̂
( j)
i + bi ′ −m( j)

i ′

∥∥∥2

2

)]
. (11)

The rotation Ri,i ′ with the lowest objective value is selected.
The overall procedure is illustrated in Algorithm 2.
2) Estimation of Absolute Rotations: From the above rela-

tive rotations, we can form a graph (V , E) as shown in Fig. 3,
whereby each node V represents a sensor and each edge E
signifies the relative rotation between the adjacent sensors.
Each edge has a cost value assigned from computing (11).

Without loss of generality, when computing absolute sensor
rotations, one sensor coordinates can be set as the common
frame of reference from which other sensor coordinates are
defined. According to our canonical array formulation from
Section II, the first sensor is set as the reference frame, but
we are free to choose any other sensor as the reference if
necessary.

Other sensor rotations can then be computed by trans-
forming the reference frame by a single or multiple relative

Fig. 3. Graphs of relative rotations between pairs of sensors (a) before
pruning and (b) after pruning. We employ Prim’s algorithm [34] to extract
the best set of edges (relative rotations) with minimum overall cost (sum of
pairwise sensor estimation errors). The pruned edges are used to uniquely
determine initial absolute sensor rotations, which are then passed as inputs to
the robust rotation averaging stage in Algorithm 3.

rotations. For example, sensor 3’s rotation (R3) can be obtained
by computing R1,3R1, R4,3R1,4R1, or R2,3R4,2R1,4R1. In an ideal
noiseless environment, these would all yield the same rotation
for sensor 3. However, in the presence of noise, each of the
above is likely to yield a different estimate for R3, with some
more accurate than the others. Hence, there should be a way
of finding the set of (relative rotation) edges leading to the
most accurate absolute rotations of all sensors.

To achieve above, we first employ Prim’s algorithm [34] to
prune the set of (relative rotation) edges and form a tree of best
edges spanning all sensor nodes with minimum sum of edge
costs (widely known as the minimum spanning tree). This can
be interpreted as extracting the set of relative rotations linking
all sensors with the lowest sum of sensor estimation errors
(see Fig. 3 for an example). These pruned relative rotations
are then used to yield initial absolute rotations of the array
sensors.

Second, since the obtained absolute rotations are inevitably
biased toward pruned relative rotations, we perform rotation
averaging [30] to find optimal absolute sensor rotations over
the entire set of relative rotations. For algorithmic illustration,
suppose that the initial rotations of sensor i and i ′ are Ri

and Ri ′ , and the relative rotation between sensors i and i ′
is computed as Ri,i ′ . Ideally, R′i = Ri,i ′Ri (following the
convention from [30]), but due to noise, Ri,i ′ = R′iRi

� may
not hold. We wish to make updates �Ri and �Ri ′ such that
the updated rotations Ri ′�Ri ′ and Ri�Ri satisfy the relative
rotation constraint Ri,i ′ = Ri ′�Ri ′�R�i R

�
i .

By using Rodrigues’ formula �R =: expm(�ω), where
expm denotes an exponential map from the lie algebra so(3)
to SO(3), we can rewrite this as

Ri,i ′ = Ri ′expm(�ωi ′)expm(−�ωi)R
�
i

= Ri ′BC H (�ωi ′ ,−�ωi)R
�
i

where BCH stands for the Baker–Campbell–Hausdorff
formula [35]. Chatterjee and Govindu [30] first-order approx-
imated BCH(�ωi ′ ,−�ωi ) ≈ expm(�ωi ′ −�ωi ), yielding

BC H (�ωi ′ ,−�ωi ) = R�i ′ Ri,i ′Ri ≈ expm(�ωi ′ −�ωi )

⇒ �ωi ′ −�ωi ≈ logm
(
R�i ′ Ri,i ′Ri

)
(12)
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Algorithm 2 Robust Estimation of Relative Rotations

Inputs: field directions of all sensors {x̂( j)
i }

1: for i = 1, . . . , (M − 1) do
2: for i ′ = (i + 1), . . . , M do
3: repeat
4: Sample 2 field indices (�) between 1 and N .
5: [U,S,V] ← svd(� j∈�x̂( j)

i ′ x̂( j)�
i )

6: Ri,i ′ ← U diag([1, 1, det(UV�)])V�
7: Compute fi,i ′ := f (Ri,i ′) from (11).
8: if fi,i ′ < f best

i,i ′ or iteration == 1 then
9: f best

i,i ′ ← fi,i ′

10: Rbest
i,i ′ ← Ri,i ′

11: end if
12: until max. # iterations reached
13: end for
14: end for

Outputs: relative rotations {Rbest
i,i ′ } and costs { f best

i,i ′ }

Algorithm 3 L1-Norm Averaging of Absolute Sensor Rota-
tions

Inputs: relative rotations between pairs of sensors {Ri,i ′ }
and absolute sensor rotations {Ri}

1: Form D from (13).
2: repeat
3: Initialize e as an empty vector.
4: for i = 1, . . . , (M − 1) do
5: for i ′ = (i + 1), . . . , M do
6: e← [e; R�i ′ Ri,i ′Ri ]
7: end for
8: end for
9: �ω← arg min�ω‖D�ω − e‖1

10: for i = 1, . . . , M do
11: Retrieve �ωi from �ω

12: Ri ← Ri expm(�ωi )
13: end for
14: until max. # iterations reached or ‖�ω‖2 < ε

Output: absolute sensor rotations {Ri}

where logm is a logarithmic map from SO(3) to so(3). Now,
stacking (12) for all relative rotation edges yields

⎡
⎢⎢⎢⎣
−I I · · · 0
−I 0 · · · 0
...

...
. . .

...
0 0 · · · I

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

�ω1

�ω2
...

�ωM

⎤
⎥⎥⎥⎦ ≈

⎡
⎢⎢⎢⎣

logm
(
R�2 R1,2R1

)
logm

(
R�3 R1,3R1

)
...

logm
(
R�MRM−1,MRM−1

)

⎤
⎥⎥⎥⎦

⇒ D�ω ≈ e (13)

where �ω ∈ R
3M is a stacked vector of updates in all

absolute sensor rotations. So long as ‖�ω‖2 is small, the above
approximation holds.

As written in Algorithm 3, we iteratively minimize
‖D�ω − e‖1 over �ω with e being updated per iteration. Since
this is a convex objective, we can use SDPT3, a default solver
included in the CVX library [36].

Fig. 4. Four InvenSense MPU9250 IMUs used for collecting real data.

C. Joint Refinement of Sensor Variables and Field Vectors

Since the intrinsic and rotation estimations have been carried
out in a sequential manner, the errors from intrinsic esti-
mation are likely to have lowered the accuracy of absolute
rotations. To mitigate this issue, we propose to refine all
sensor array variables by minimizing the sum of robustified
distances between the observations and the corresponding
model estimates over all sensor intrinsics {(Ki , bi )}, absolute
rotations {Ri}, and field directions {x̂( j)}, i.e., solve

arg min
{(Ki ,Ri ,bi )},{x̂( j )}

M∑
i=1

N∑
j=1

ρ

(∥∥∥KiRi x̂( j) + bi −m( j)
i

∥∥∥2

2

)
(14)

where ρ : R→ R is a robust kernel implemented to reduce the
effect of gross outliers. Like in Section III-A, we choose the
Cauchy kernel [23] ρ(s) = log(1+s/τ 2), where τ is the inlier
radius, and each field vector is parameterized to lie on a unit
3-D sphere. In addition, each rotation matrix is parameterized
as an axis-angle vector [37] ω ∈ R

3 such that Ri := expm(ωi),
and we set the first sensor’s rotation as the common frame of
reference by fixing R1 = I.

Since (14) is a robust nonlinear problem, we solve this by
using the Levenberg–Marquardt algorithm [28] equipped with
Trigg’s correction [24], similar to Section III-A. This requires
deriving the first-order derivative (Jacobian) of the residual
KiRi x̂( j)+bi−m( j)

i with respect to all the optimized variables.
While these Jacobians are analytically tractable, one can apply
a publicly available autodifferentiation library such as Ceres
Jet [37] to minimize (14) without deriving analytic derivatives.

Although solving (14) is nontrivial without good initializa-
tion due to its nonlinear nature, the obtained sensor array
model variables from steps 1 and 2 yield a near-optimal
solution as will be demonstrated in Section IV, serving as
appropriate initialization for robust nonlinear optimization.

IV. EXPERIMENTAL RESULTS

We have carried out experiments to observe two charac-
teristics, namely our method’s performance compared with
other state-of-the-art array self-calibration algorithms and the
accuracy improvement brought by different components of our
method also known as ablation study.

For the first comparison, we chose Wang et al.’s
method [10] and Hwangbo et al.’s method [11], both of
which are the only algorithms from Table I not requiring prior
knowledge of sensor intrinsics or array geometry (like ours).

For ablation study, we compared three settings: 1) our
proposed method; 2) ours without refinement (steps 1 and
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Fig. 5. Results on synthetic data as a function of additive Gaussian noise standard deviation (σ ) with different proportions of gross outliers. More details
about the used metrics for comparison can be found in Section IV-B. (a) Normalized intrinsic errors (no outlier). (b) Normalized intrinsic errors (1% outliers).
(c) Normalized intrinsic errors (5% outliers). (d) Rotation errors (no outlier). (e) Rotation errors (1% outliers). (f) Rotation errors (5% outliers). (g) Inlier field
errors (no outlier). (h) Inlier field errors (1% outliers).

2 only); and 3) ours without robustness (the L2-norm ver-
sion). Specifically, our L2-norm version replaces the Cauchy
kernel by a trivial function ρ(s) = s and Algorithm 2 by
solving (9) over all data points (not just 2). We selected these
to demonstrate the quality of our solution before and after
refinement and the impact of robustness in improving the
calibration accuracy.

All the experiments were run on MATLAB R2019b with a
PC comprising AMD Ryzen 7 2700X CPU and 32-GB RAM.

A. Implementation Details

Details for implementation of the tested methods.
1) Data Normalization: For each tested algorithm,

we applied the data normalization technique in [23] to the
measurements {m( j)

i } across all array sensors, subtracting
by the mean of all measurements and then dividing by the
respective standard deviation. This ensures a level playground
for comparison by improving the numerical stability of all
methods.

2) Optimization Hyperparameters: For all iterative non-
linear optimization processes (steps 1 and 3 in our method
and step 1 in Wang et al.’s method), we employed the
Levenberg–Marquardt algorithm with the maximum number
of iterations set to 300 and the function tolerance set to 10−9.
For robust nonlinear optimization in our method, we set the

inlier radius τ for the Cauchy kernel to
√

3, implying an
error of 1.0 per dimension for a data point to be considered
as an inlier. For estimating relative rotations, the number of
RANSAC iterations was set to 1000. ε in Algorithm 2 was set
to 10−3.

3) Solution Canonicalization: Neither Wang et al. or
Hwangbo et al. have explicitly stated how to resolve the
solution ambiguity mentioned in Section II, making it difficult
to compare between the solutions from different algorithms.
For a fair comparison, we applied our canonical form of the
sensor array model from Section II to the output of each
method (denoted as (can.) in Figs. 5 and 6 and Table II).
In addition, Hwangbo et al.’s method outputs an unrealistic
algebraic array model with an additional scale factor t ( j) per
field vector, i.e., y( j)

i = Ai x̂( j) + t ( j)bi , so we added a final
step of setting each t ( j) to 1 to yield a physically meaningful
array model.

B. Simulation Study

We compared the accuracy of different algorithms for a
range of additive Gaussian noise levels (σ ) and proportion
of gross outlier measurements (η).

1) Generating Ground-Truth Data: We sampled 1000 arbi-
trary 3-D field directions commonly observed by four sensors.
Each sensor’s absolute rotation Ri was randomly sampled from
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Fig. 6. Results on synthetic data as a function of proportion of gross outliers (η). The standard deviation of added Gaussian noise (σ ) is fixed at 1.0, similar
to that obtained from real magnetometer readings (0.69). Note that ours without refinement is just slightly above our method in both plots. (a) Normalized
intrinsic errors. (b) Mean rotational errors. (c) Mean inlier field errors.

TABLE II

RESULTS ON REAL DATA ACHIEVED BY TESTED ARRAY AUTOCALIBRATION ALGORITHMS. M1 AND A1 ARE OUTLIER-FREE AND USED AS TEST SETS
AND OTHERS ARE FOR MODEL ESTIMATION (TRAINING). ON EACH TRAINING DATA, EACH METHOD LEARNS A MODEL {(Ai , bi )} = {(KiRi , bi )},

WHICH IS COMPARED AGAINST THE TEST SET-DERIVED MODEL (PRECISION) AND TESTED ON M1/A1 MEASUREMENTS (ACCURACY)

the SO(3) manifold [38] apart from the first sensor’s rotation
R1, which was set to I. Similar to [23], each sensor’s upper
triangular Ki was produced as a diagonal-dominant matrix
100(I + 0.1 Ei), where I is the identity matrix and Ei is
a random upper triangular matrix with each element sampled
from N (0, 1). The elements of each sensor’s bias bi were each
drawn from N (0, 1) and scaled by a factor of 10. Each ideal
model output y( j)

i was calculated using (5).
To simulate the sensor measurements {m( j)

i }, we perturbed
each model output y( j)

i by adding the Gaussian noise N (0, σ ).
Then, a predefined fraction (η) of measurements were further
corrupted by adding random gross outlier noise, where each
element was sampled from U(0, 1), multiplied by 100 and
randomly flipped sign with 50% probability.

2) Experimental Conditions: The tested ranges of Gaussian
noise level (σ ) and proportion of gross outliers (η) are
between 0 and 2.0 (twice the standard deviation obtained
from outlier-free real magnetometer readings) and 0% and 5%,
respectively. For each algorithm, we made 25 repeats with
different ground-truth data on each experimental condition
(σ, η).

3) Accuracy Metrics: Each algorithm’s accuracy is reported
in terms of three metrics, namely the normalized sensor
intrinsic error defined as√√√√ 1

12M

M∑
i=1

∥∥[Ki , bi ]−
[
K∗i , b∗i

]∥∥2
2

the mean absolute rotation error (in degrees) defined as
√√√√ 1

M

M∑
i=1

∥∥logm
(
R�i R

∗
i

)]∥∥2
2

and the mean inlier field error (in degrees) defined as
(1/|C|) ∑

j∈C cos−1(x̂( j)�x̂∗( j)), where the quantities with
asterisks are ground-truth values and C denotes the set of
inlier measurements (considering fields from anomalous mea-
surements can incur misleading results).

4) Results: Figs. 5 (per σ ) and 6 (per η) show that our
proposed (robust) method outperforms other methods by some
margin in all cases except for the ideal situation with zero
outliers, which is narrowly won by our L2-norm variant
[see Fig. 5(a) and (d)]. This shows that incorporating robust-
ness is crucial for stable, accurate and precise sensor array
calibration. In addition, the figures show that joint refinement
(step 3) in our method improves the accuracy and that the
solution from step 2 is still quite accurate. Also, our L2-norm
variant achieves the best accuracy across all tested nonrobust
algorithms, demonstrating the appropriateness of our method’s
architecture.

In addition, it is interesting to observe Hwangbo et al. wins
over Wang et al. in terms of model accuracies {Ki , bi Ri}
but loses in estimating field directions {x̂ j} for inlier mea-
surements. We envisage that this is related to the fact that
Hwangbo et al.’s method yields an unrealistic solution in



HONG et al.: UNIFIED METHOD FOR ROBUST SELF-CALIBRATION OF 3-D FIELD SENSOR ARRAYS 1007211

Fig. 7. Visualization of the array sensor model and respective postcalibration plot obtained by each algorithm on real data. Each algorithm has estimated the
array model of four three-axis magnetometers from the outlier-present MS1 data set in Table II. The quality of each array model is visualized via ellipsoid
fitting results and postcalibration plots (field magnitude over time) on the inlier-only M1 sequence (used as test set). Blue dots are individual measurements
in M1.

the presence of noise as discussed in Sections I-A and IV-A.
This results in each field x̂ j experiencing a different degree
of sensor bias, which, besides not being physically accu-
rate, potentially deteriorates the accuracy of estimated field
directions.

C. Results on Real Data

We have also compared the calibration precision and accu-
racy of different methods on real sensor array data.

1) Data Acquisition: We obtained measurements from four
IMUs (InvenSense MPU 9250) as shown in Fig. 4, each
comprising a three-axis accelerometer and magnetometer, all
rigidly attached to an array board. These were collected by an
arduino microprocessor via I2C protocol. To avoid potential
address conflicts, we used an I2C multiplexer (Texas Instru-
ments TCA9548A). Magnetometer readings and accelerometer
readings were obtained in separate occasions to mimic differ-
ent types of array sensors.

The obtained measurement sequences are listed in Table II.
Each was acquired without following a particular conventional
calibration procedure, such as the one proposed in [22]. Data
set IDs with M are from a magnetometer array and the ones
with A are from an accelerometer array. Since the accelerom-
eter readings were about a factor of 100 greater than those
of magnetometers, we divided the accelerometer readings by
100 to keep the same effective width of the robust kernel.
M{1-2}, A{1-2} are mostly, if not all, outlier-free tracks,
while MP{1,2} (magnetometers near a phone), MS{1-3}
(magnetometers near a stapler), and AO{1-2} (accelerometers
with sudden accelerations) contain a significant proportion of
outliers (1.2%–12.6%) arising from real-world disturbances.

2) Experimental Procedure: Since no ground-truth data
are available for real-world autocalibration, we have used

outlier-free M1 (326 measurements) and A1 (362 measure-
ments) as the test sets and the other sequences as training data.
For each algorithm on each training sequence, we estimated
(trained) an array model. Each of these obtained models was
tested on either M1 or A1 depending on the type of sensor
array.

3) Accuracy and Precision Metrics: To quantify the model
precision, we compared the output model {(Ai , bi )} against
the de facto ground truth {(A∗i , b∗i )} estimated from the test
set (M1 or A1) by computing the normalized array model
deviation error√√√√ 1

12M

M∑
i=1

∥∥[Ai , bi ]−
[
A∗i , b∗i

]∥∥2
2.

(Ai = KiRi .) For quantifying the model accuracy, we computed
the model’s fitting error on the test set (M1 or A1) by
calculating

min{x̂( j )∈ S2}
1

12M

M∑
i=1

N∑
j=1

∥∥∥Ai x̂( j) + bi −m( j)
i

∥∥∥2

2
. (15)

This involves estimating optimal 3-D field directions for the
test track given the sensor variables {(Ai , bi )}, which can be
solved in closed form followed by vector normalization as no
robust kernel is present in (15) (since M1/A1 are outlier-free).

4) Accuracy and Precision Results: All the results on real
data are included in Table II. These confirm the trend shown
in the simulation study, with our method winning most of
the entries especially on the tracks with outliers. In addition,
Wang et al.’s method fails for many of the tested sequences.

5) Visual Verification of Results: In addition, we have
applied verification techniques such as ellipsoid fitting and
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postcalibration plots to visualize and verify the above numer-
ical results between our method and prior studies. For this
purpose, each algorithm first fits a magnetometer array model
on the outlier-existing MS1 data set, and then, this array model
is verified on the inlier-only M1 sequence by checking two
criteria: 1) the quality of the ellipsoid fitting results on four
sensors and 2) the respective postcalibration plot, as shown
in Fig. 7. Each postcalibration plot shows the field magnitude
({∥∥x( j)

∥∥
2}) over time (in the M1 sequence) jointly estimated

across the four sensors by the respective algorithm, where each
field x( j) is computed by solving

minx( j )∈R3

∑M
i=1

∥∥∥Ai x( j) + bi −m( j)
i

∥∥∥2

2
(16)

through least squares. Note that, for the purpose of plotting
postcalibration plots, the field vectors remain unnormalized
(i.e., not enforced to be of unit norm) to show discrepancies
in the absolute field magnitude at test time [22], [39], [40].

To summarize the findings from Fig. 7, our method finds
feasible intrinsics of the array model from outlier-present MS1,
overall fitting ellipsoids well to the outlier-free M1 measure-
ments. On the other hand, Hwangbo et al.’s method shows
some disparity between the ellipsoids and the M1 observa-
tions especially for sensors 1, 3, and 4, and the method
of Wang et al. ends up with significantly distorted ellip-
soids across all sensors. These results are in line with the
algorithm ranking produced by our numerical comparisons
in Table II.

Regarding the postcalibration plots, our method shows less
variation in field magnitude than Hwangbo et al.’s, demon-
strating better calibration performance. Surprisingly though,
Wang et al.’s method seems to yield an almost flat line, which
may seem optimal at first sight. Nevertheless, a previous
study [23] has intuitively explained that this can be trig-
gered by badly scaled ellipsoids, which can be generated by
self-calibration algorithms not being robust to outlier measure-
ments. For this reason, the study has also emphasized a need to
always consult the ellipsoid fitting results jointly. We believe
that this is the case for Wang et al.’s algorithm since it reports
significant errors at test time in Table II, implying its weakness
against anomalies.

V. CONCLUSION

In this work, we have addressed the problem of
self-calibrating an array of same-type 3-D field sensors, such
as all three-axis magnetometers or all accelerometers, from
an arbitrary movement that can trigger anomalous measure-
ments. For this purpose, we proposed a canonical form of
the sensor array model for optimization and developed a
multistage robust autocalibration method, yielding a solution
that minimizes the array model estimation errors. Our method
has consistently achieved better accuracy and precision than
other state-of-the-art algorithms on synthetic and real data with
outliers. In addition, we have shown that, through ablation
study, each added component of the method improves the
average solution accuracy. Future work should focus on mak-
ing the pipeline more efficient to allow faster autocalibration

of the sensor arrays while maintaining robustness to gross
anomalies.
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